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SUMMARY

An operator splitting and element-by-element conjugated gradient solver, and equal order interpolations
are applied for solving time dependent Navier–Stokes (NS) equations to simulate �ow induced vortex
shedding in the present study. In addition, the convection term is corrected by balanced tensor di�usivity,
which can stabilize the numerical simulation and overcome the numerical oscillations. The evolution of
the interested �owing properties with time is analyzed by using spectral analysis. The developed code
has been validated by the application of two examples: a driven cavity �ow and a �ow induced vortex
vibration. Results from the �rst example for Reynolds number Re=103 and Re=104 are compared
with other numerical simulations. Results from the second example, uniform �ow past a square rod
over a wide range of high Reynolds numbers from Re=103∼ 105, are compared with experimental
data and other numerical studies. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: operator splitting; conjugated gradient solver; equal order interpolations; spectral
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1. INTRODUCTION

It is well known that vortex shedding is generated while �uid �ow passes the blu� body
[1–11]. This phenomenon has drawn much attention particularly in �ow separation and the
interference between vortices, which is of considerable signi�cance in industry. For example,
the �ow past a blu� body near a sliding wall has been of interest for several years in the
automotive industry, especially to reduce drag for highly fuel-e�cient vehicles. Recently, a
marked interest in such �ows has arisen in relation to magnetic disc-storage devices in the
computer-peripherals industry. More recently, a vortex meter [9; 12] has widely been used
in industry and its principle is based on a constant Strouhal number for a well established
turbulent �ow, i.e. a Reynolds number greater than around 104. The Strouhal number is given
by St≡ [(fD)=(Ub)], where f is the frequency of vortex shedding, D the width of the blu�
body and Ub a characteristic velocity. When St is a constant, this implies that, under this
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condition, frequency is proportional to velocity and therefore volume rate, thus providing the
basis of a �ow meter. In this study, an investigation of the two-dimensional, unsteady �ow
past a blu� body, a square rod, is made to compare with the research of Arnal et al. [2] and
experimental data of Okajima [8] because of its similarity to a vortex �ow meter.
The �nite element method has been extensively used in �uid �ow simulation. Benchmark

strategies for solving Navier–Stokes (NS) equations can be classi�ed into two categories.
One is to solve for (U; P) directly [13] by using the well-known mixed formulation. The
advantages of this kind of method are the ease of physical interpretation and the ease with
which boundary conditions can be speci�ed. However, the numerical conservation of mass
is not accurately satis�ed during numerical integration. Therefore, for high Reynolds number
�ow simulation this would eventually lead to divergence. The other is to use the stream
function and vorticity function [14; 15] for predicting the �ow �eld, which automatically
satis�es mass balance. Consequently a high Reynolds number �ow could usually be predicted
easily. However, the boundary conditions of vorticity are di�cult to de�ne. Additionally, there
is no stream function de�nition in three-dimensional formulation, although streamlines do
exist. With these limitations, it is impossible to extend this formulation to a three-dimensional
�uid �ow simulation except in the case of axial symmetry. It is also known from the matrix
analysis that the order of pressure shape function is less than that of velocity while using the
mixed formulation to solve the (U; P) directly [13; 16]. The proposed method here applied to
the simulation of vortex shedding is to use (U; P) formulation with equal order interpolations
without solving the continuity equation such that this formulation can be easily extended to
high Reynolds numbers �ow simulation.
To ensure a near optimal mesh, it is noted that grids near the blu� body are needed to

be re�ned. Therefore, unstructured grids are designed to meet this requirement and to avoid
using redundant structured grids. In the �nite element analysis, Jan et al. [16] present a T4=C3
(bubble) element to save computational memory and therefore to accelerate the computation
associated with a smaller frontal width. Jan et al. [16] used a direct mixed formulation to
advance in a stepwise manner. In order to simulate high Reynolds number �ows, an operator
splitting technique is applied which automatically satis�es the mass conservation equation
and thus results in the positive de�nite Poisson type equation. Because of the positive de�nite
matrix [17], an element-by-element conjugate gradient solver [17; 18] can be implemented into
the code to speed up the computation. Additionally, balanced tensor di�usivity (BTD) [19–21]
is used to minimize the time integration errors and has the upwinding e�ect which stabilizes
the convection term for high Reynolds number �ow simulations. Consequently, the physically
present vortex shedding could be predicted without an unrealistic numerically oscillating �ow
pattern. To implement the code, equal order interpolations, such as three nodes and four
nodes shape functions, are adopted in Example 1. Three nodes shape functions are used in
Example 2. The computed results show excellent agreement with experiment data [8; 22] as
well as other numerical studies [2; 23].

2. FLUID FLOW EQUATIONS

The NS equations governing a two-dimensional incompressible �uid �ow can be expressed
in a non-dimensional form as

@U
@t
+U •∇U=−∇P + F+∇ • 1

Re
∇U (1)
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The principle of mass conservation must not be violated, and is represented by

∇ •U=0 (2)

In which U;F are the vectors of non-dimensional velocity and body force; P and Re are the
pressure and Reynolds number, respectively. The dimensionless variables are de�ned by

x=
x̃
D
; y=

ỹ
D
; t=

t̃Ub
D
; U=

Ũ
Ub
; P=

P̃
�U 2

b
; Re=

�UbD
�

In which Ub; �; �; D are the characteristic magnitude of velocity, the �uid density, the �uid
viscosity, and the characteristic length, respectively. The tilde denotes a dimensional variable.
It is noted that the time, t̃, has been normalized with the convective time scale, TC =D=Ub,
which is much smaller than the viscous time scale, TD =�D2=�, for an oscillatory vortex
shedding �ow.
An operator splitting and element-by-element conjugated gradient solver, and equal order

interpolations are applied for solving time dependent NS equations in the present study. The
employed projection technique is �rst-order accuracy in time [15]. To overcome the numerical
oscillation and to stabilize the high Reynolds number �ow simulation, a BTD [19–21] is
introduced into the discrete NS equations to compensate the time integration error and thus
the convection term is corrected. Consequently, vortex shedding can be obtained for �uid �ow
past a blu� body. The convection term is de�ned as Equation (3)

f adv =−(U •∇)U (3)

The BTD term could be obtained by Equation (4).

B≡ �t
2
(U •∇)f adv (4)

Where B represents the BTD vector and �t is the non-dimensional time step size. The direct
mixed formulation of the NS equations with the �nite element method results in matrices
which are neither symmetric nor positive de�nite. To meet the positive de�nite requirement
and to accelerate the convergence of �uid �ow simulation in every single time step, an
operator splitting technique is adopted. Adding Equation (4) into the discrete NS equation,
Equation (5) is obtained as follows.

Uk+1 −Uk
�t

= f kadv −
�t
2
(Uk •∇)f kadv −∇Pk+1 + Fk +∇ • 1

Re
∇Uk (5)

In which k represents the kth time step. The basic idea of operator splitting, which is also
called time splitting or the method of fractional steps [24–26] is, in general, a method of
approximation of the evolution equations based on decomposition of the operators they orig-
inally contain. In this analysis, the operator splitting procedure can be summarized in the
following three steps. The �rst step is to obtain Equation (7) by splitting Equation (6) from
Equation (5).

U∗ −Uk
�t

= f kadv −
�t
2
(Uk •∇)f kadv + Fk +∇ • 1

Re
∇Uk (6)

Uk+1 =U∗ −�t(∇Pk+1) (7)
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A �ctitious or provisional velocity U∗ can be solved from Equation (6) explicitly. Secondly,
Equation (8) for the pressure Pk+1 is derived by making the divergence of Equation (7) and
by enforcing the principle of mass conservation (∇ •Uk+1 =0). At the �nal step, Uk+1 is
calculated from Equation (7) by the solved pressure, Pk+1.

∇2Pk+1 =
1
�t

∇ •U∗ (8)

To start the solution procedure, proper boundary conditions are required for these equations
of motion. Fortunately, the essential feature of the fractional step or operator splitting method
is that the numerical solution is independent of the value U∗ on the boundary (�) and more
precisely of U∗ • n|�. In the present study, U∗|� =Uk+1|� is selected for convenience and this
selection is purely numerical [15; 24; 25]. A non-slip boundary condition is proposed for the
solid boundary and a traction free boundary condition is adopted for solving Equation (8) at
a speci�ed outlet. The traction free boundary condition [4; 16] is described by

P − n • � • n=0 (9)

Where the stress tensor is de�ned as �= 1
Re (∇U+ (∇U)tr) and n is an outward normal unit

vector. For unsteady �ow simulations, the entire procedure is repeated for each time step.

3. COMPUTATIONAL METHOD

Applying the Galerkin �nite element method to Equations (6)–(8) and dropping all boundary-
conditions-generated surface integrals, the resulting Equations (10)–(14) are expressed as

me∑
1
Me
abu

∗
b =

me∑
1
Me
abu

k
b −�t

me∑
1

(
Ceab + B

e
ab +

1
Re
Deab

)
ukb (10)

me∑
1
Me
abv

∗
b =

me∑
1
Me
abv

k
b −�t

me∑
1

(
Ceab + B

e
ab +

1
Re
Deab

)
vkb (11)

me∑
1
DeabP

k+1
b =− 1

�t

me∑
1
(Dex; abu

∗
b +D

e
y; abv

∗
b) (12)

me∑
1
Me
abu

k+1
b =

me∑
1
Me
abu

∗
b −�t

me∑
1
Dex; abP

k+1
b (13)

me∑
1
Me
abv

k+1
b =

me∑
1
Me
abv

∗
b −�t

me∑
1
Dey; abP

k+1
b (14)

Where the element matrices associated with Equations (10)–(14) are evaluated on each ele-
ment as

Me
ab ≡

∫
�e
NaNb d�e (15)
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Ceab ≡
∫
�e
Na(U

k ·∇Nb) d�e (16)

Beab ≡
�t
2

∫
�e
(Uk ·∇Na)(Uk ·∇Nb) d�e (17)

Deab ≡
∫
�e

∇Na ·∇Nb d�e (18)

Dex; ab ≡
∫
�e
Na
@Nb
@x

d�e (19)

Dey; ab ≡
∫
�e
Na
@Nb
@y

d�e (20)

In which Na Nb are the shape functions de�ned by the linear triangle element shape function
or the quadrilateral element function in this study, ub and vb the velocity at the nodal points
in x- and y-direction respectively. Those element matrices de�ned by Equation (15)–(20)
are given in Appendix A. In addition, Equation (12) can be solved by conjugate gradient
method (CG [17; 18]). In exact arithmetic, the conjugate gradient method is guaranteed to
converge within m iterations, where m is the order of the matrix (in this study, m is the
number of unknown pressure at the nodal points). In practice, the number of iterations is
strongly dependent upon the condition number of the matrix. This is more of theoretical
interest than a practically usable criterion. In this study, the convergence criterion is that the
least of the normalized residuals for pressure summed over all the control volumes (elements)
in the nodal point should be less than a prescribed value, usually 10−5. For the calculations,
the time step size �t is selected by Equation (21) derived by a simpli�ed analysis for a one-
dimensional case [4] and it is clear that �t becomes smaller as decreasing characteristic mesh
size �.

�t¡
�2

2=Re+ �
(21)

4. NUMERICAL RESULTS

The hydraulic force is important in many physical and engineering problems encountered in
�uid dynamics. By de�nition, the force F̃S acting on the blu� body can be expressed by

F̃S =
(∮

�
(Pns −

1
Re
(∇U+ (∇U)tr) • ns) d�

)
(�U 2

b D)

= F̃Di+ F̃Lj (22)

F̃D =
(
1
2
�U 2

b D
)
CD (23)
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Figure 1. Geometric layout of driven cavity �ow.

F̃L =
(
1
2
�U 2

b D
)
CL (24)

CD =2
∮
�

((
P − 2 1

Re
@u
@x

)
dy +

1
Re

(
@u
@y
+
@v
@x

)
dx

)
(25)

CL =−2
(∮

�

((
P − 2 1

Re
@v
@y

)
dx +

1
Re

(
@u
@y
+
@v
@x

)
dy

))
(26)

In which CD represents the drag coe�cient, CL the lift or vibration coe�cient, F̃D the drag
force, F̃L the lift force and � the boundary (clockwise) of blu� body. Here u and v stand
for the velocity in x- and y-direction, respectively. The notations i and j are the unit base
vectors of the Cartesian coordinate in x- and y-direction, respectively. It should be mentioned
that ns is the unit normal vector (directed into the blu� body) when the integration is carried
out.
The �ow property CD (or CL) varies with Re and St number. The St, de�ned as St=

fD=Ub where f is the frequency of vortex shedding, is obtainable from the �ow prop-
erty CD or CL. In other words, CD or CL can be recorded for every single time step for
a given Reynolds number and consequently the Strouhal number is obtained from the spectral
analysis [17].

Example 1: Wall-driven cavity �ow

The driven cavity �ow is well known as a standard test problem in �uid �ow simulations.
In this analysis, two di�erent Reynolds numbers, Re=103 and Re=104, are tested. The
problem of interest is sketched in Figure 1 including the geometric con�guration and boundary
conditions. The triangle mesh layout, which contains 6866 elements and 3562 nodal points, is
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Figure 2. Mesh layout of driven cavity �ow (6866 elements, 3562 nodes).
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Figure 3. Mesh layout of driven cavity �ow (4400 elements, 4529 nodes).

shown in Figure 2, and the quadrilateral mesh, which contains 4400 elements and 4529 nodal
points, is shown in Figure 3. To study the e�ect of mesh size, medium-sized mesh (5716
elements and 5305 nodes) for a quadrilateral element is also shown in Figure 4 and �ne mesh
(8874 elements and 9131 nodes) is shown in Figure 5. The simple relation between �t and the
characteristic mesh size �, which is roughly approximated by the square root of the minimum
area of elements, is given by Equation (21). The �nest area of the triangle elements shown
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Figure 4. Mesh layout of driven cavity �ow (5716 elements, 5305 nodes).
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Figure 5. Mesh layout of driven cavity �ow (8874 elements, 9131 nodes).

in Figure 2 is 0.000037 and therefore � is approximated by 0.006. Conservatively, �t=0:005
and �t=0:003 are selected in this study. The choice of �t for quadrilateral mesh is also
carried out in a similar way. A moving wall with a velocity u=1:0 moves from left to
right. The �uid inside the cavity is initially motionless. As shown in Figures 6 and 7, the
evolution of iteration number with time shows the solution is converged within m iterations
at each time step in which m is the number of the unknown pressures in Equation (12).
All the calculations were performed on a Pentium III 450, and the program was written in
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Figure 6. Evolution of iteration number with time (�t = 0:005; Re = 103)
(6866 triangle elements, 3562 nodes).
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Figure 7. Evolution of iteration number with time (�t = 0:005; Re = 103)
(4400 quadrilateral elements, 4529 nodes).
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Figure 8. Convergence history of monitored u(0:5; 0:5) (�t = 0:005; Re = 103)
(6866 triangle elements, 3562 nodes).

Fortran language using Lahey–Fortran 90-V4.5 compiler. The computing time for completing
20 000 time steps is about 490 min for the triangle element and 140 min for the quadrilateral
element at Re=103. Therefore, the computational time ratio between the two test cases is
[(490)=(140)]=3:5, which is attributed to the condition numbers, the type of elements and the
number of elements. To obtain the steady state solution of driven cavity �ow, the evolution
of the horizontal velocity u with time at the point (0.5, 0.5) is plotted in Figures 8 and 9
for Re=103 and in Figures 10 and 11 for Re=104. The streamline contours of the fully
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Figure 9. Convergence history of monitored u(0:5; 0:5) (�t = 0:005; Re = 103)
(4400 quadrilateral element, 4529 nodes).
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Figure 10. Convergence history of monitored u(0:5; 0:5) (�t = 0:003; Re = 104)
(6866 triangle elements, 3562 nodes).
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Figure 11. Convergence history of monitored u(0:5; 0:5) (�t = 0:005; Re = 104)
(4400 quadrilateral elements, 4529 nodes).

developed steady �ow are shown in Figures 12 and 13 for Re=103 and in Figures 14 and
15 for Re=104. A magni�ed view of a secondary vortex at the right-hand lower corner is
illustrated in Figure 16. The corresponding locations of various vortices, which are in excellent
agreement with numerical results of Ghia et al. [23], are listed in Table I. Additionally,
the numerical results of velocity pro�les u along the vertical central line are in very good
agreement with data from Reference [23] as presented in Figures 17 and 18 for Re=103.
It is noted that the numerical results for di�erent time increments also agree very well with
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Figure 12. Streamlines of driven cavity �ow (�t = 0:003; t = 60; Re = 103)
(6866 triangle elements, 3562 nodes).
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Figure 13. Streamlines of driven cavity �ow (�t = 0:005; t = 50; Re = 103)
(4400 quadrilateral elements, 4529 nodes).

the results from Reference [23]. However, the results for Re=104 are di�erent for di�erent
time step sizes as shown in Figures 19 and 20. It is evident that the solution is much closer
to the numerical results of Reference [23] when the smaller time step �t=0:003 is adopted
for the same mesh. This is caused by less upwind e�ect from BTD through a smaller time
step size at high Reynolds number �ow. It implies that the spatial resolution on this order of
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Figure 14. Streamlines of driven cavity �ow (�t = 0:003; t = 180; Re = 104)
(6866 triangle elements, 3562 nodes).
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Figure 15. Streamlines of driven cavity �ow (�t = 0:005; t = 200; Re = 104)
(4400 quadrilateral elements, 4529 nodes).

magnitude of mesh size (6866 elements, 3562 nodes) with a proper time step is su�ciently
accurate for the purpose of this study and a further test is carried out and is illustrated in
Figure 20. Again, the solution obtained by using 4400 quadrilateral elements, 4529 nodes and
�t=0:01 is under-predicted as compared with results of Reference [23] due to upwind e�ect.
However this phenomenon can be improved by temporal re�nement as shown in Figure 20.
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Figure 16. The location of right corner vortex for Re = 104 (4400 quadrilateral elements,
4529 nodes, �t = 0:005; t = 200).

Table I. Comparison between Ghia et al. [23] and the present study.

Location Ghia et al. Present study Present study
of vortex (numerical results) Triangle element Quadrilateral element

6866 elements, 3562 nodes, 4400 elements, 4529 nodes,
�t=0:003 �t = 0:005

Primary Right corner Primary Right corner Primary Right corner
vortex vortex vortex vortex vortex vortex

Re = 103 0.531, 0.563 0.859, 0.109 0.531, 0.565 0.867, 0.113 0.530, 0.563 0.867, 0.115
Re = 104 0.512, 0.533 0.766, 0.059 0.511, 0.533 0.766, 0.055 0.511, 0.532 0.766, 0.056
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Figure 17. u-velocity on the vertical center line in steady state (t = 60; Re = 103)
(6866 triangle elements, 3562 nodes).
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Figure 18. u-velocity on the vertical center line in steady state (t = 50; Re = 103)
(4400 quadrilateral elements, 4529 nodes).
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Figure 19. u-velocity on the vertical center line in steady state (t = 180; Re = 104)
(6866 triangle elements, 3562 nodes).
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Figure 20. u-velocity on the vertical center line in steady state
(t = 180; Re = 104) (quadrilateral element).

The numerical predictions from medium-sized mesh (Figure 4) and the �nest mesh (Figure 5)
for the time increments around 0:005∼ 0:003 do not have as much di�erence as presented in
Figure 20.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:189–211



FINITE ELEMENT ANALYSIS OF VORTEX SHEDDING 203

X

Y

0 10 20
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

D

H

tra
c

tio
n

free

v=0

v=0

u
=

1
.0

v
=

0

Figure 21. Geometric layout for �ow passing a square rod.

Figure 22. Mesh layout for �ow passing square rod (8032 elements, 4122 nodes).

Example 2: Flow induced vibration �ow – vortex shedding

The problem of vortex shedding generated while �uid �ow passes a blu� body is of importance
to validate the numerical code developed in this study. Figure 21 illustrates that a uniform
�ow at a velocity u=1:0 �ows from left to right toward a square rod with characteristic
length D=1:0. The non-slip boundary conditions are speci�ed on the surface of the solid
square rod and the traction-free boundary conditions are imposed at the downstream in this
simulation. The �uid is assumed to be initially motionless.
The �nite element mesh of the �ow region containing 8032 elements and 4122 nodal

points is presented in Figure 22. Since the velocity gradient near the square rod is very steep,
�ner mesh is needed around this blu� body. The computer simulation started from t=0 to
t=400 with a dimensionless time increment, �t=0:04. Streamline contour for Re=103 at
time instant t=275 is shown in Figure 23, which demonstrates the vibrating velocity. The
variation of CD and CL, shows evidence of cycle-to-cycle pattern as depicted in Figure 24. The
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Figure 23. Streamlines for �ow passing square rod (8032 elements, 4122 nodes,
�t = 0:04; t = 275; Re = 103).
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Figure 24. Time history of drag or lift coe�cient (8032 elements, 4122 nodes, �t = 0:04; Re = 103).
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Figure 25. CD spectral corresponding to Re = 103 (8032 elements, 4122 nodes, �t = 0:04).

fundamental shedding frequency can be obtained by measuring the frequency of the lift oscil-
lation. It is apparent from Figures 25 and 26 that the drag coe�cient oscillates twice the fre-
quency of the lift coe�cient, which has been reported by Arnal et al. [2]. For Re=100∼ 400,
the comparisons of the Strouhal number of the present study with published results [8; 10] are
given in Table II. It is clear that the current simulations give less discrepancy as compared
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Figure 26. CL spectral corresponding to Re = 103 (8032 elements, 4122 nodes, �t = 0:04).

Table II. Comparison of Strouhal number of the present study with other published results.

Strouhal number

Re Davis et al. [28] Present study Present study Okajima [8]
(numerical results) �t = 0:04 �t = 0:01 (experiments)

100 0.154 0.139 0.144 0:135∼ 0:140
200 0.148 0.152 0:140∼ 0:148
250 0.165 0.148 0.151 0:140∼ 0:148
300 0.147 0.149 0:139∼ 0:140
400 0.159 0.144 0.138 0:130∼ 0:135

Table III. Spatial and temporal re�nement study for Re = 103.

Mesh � �t CD St Arnal et al. [2] Okajima [8] Davis et al. [10; 28]
(numerical results) (experiments) (numerical results)

5106 nodes 0.0303 0.02 0.23 0.138 CD = 0:22 St = 0:125∼ 0:13 CD = 0:204
9966 elements 0.03 0.22 0.138 St = 0:142 St = 0:142
4122 nodes 0.0589 0.01 0.176 0.135
8032 elements 0.04 0.167 0.134

with the experimental results [8] while the results of Reference [10] over-predicted. Table III
provides a summary of the spatial and temporal re�nement comparisons for Re=103 and it
is clear that the simulated results give over-predictions compared with the experimental data
from Okajima [8]. The Strouhal numbers in Figures 26 and 27 (di�erent mesh size) are less
than 1 per cent discrepancy. A further test of two di�erent time increments, namely, �t=0:01
and �t=0:04, has been conducted over the Reynolds number range of Re=103∼ 105 with
the spatial condition of 8032 elements, 4122 nodal points, as plotted in Figure 28. It is
clear that the time step �t=0:01 gives the Strouhal number over-predictions in the range
of 0:132∼ 0:150 compared to the experimental data of Reference [8] and the time step
�t=0:04 gives values around 0:127∼ 0:140 closer to the experimental data of Reference
[8]. The over-predictions compared with data of Reference [8] are probably due to the high
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Figure 27. CL spectral corresponding to Re = 103 (9966 elements, 5106 nodes, �t = 0:03).
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Figure 28. Comparison between experimental results [8; 22] and the present study.

turbulent intensity (0.5 per cent in Okajima [8]) at the inlet; turbulent intensity, however,
is completely absent in the numerical simulation. Furthermore, experiments [27] show that
the Strouhal number decreases with increasing turbulent level at the inlet. In addition, the
e�ect of the geometric factor, (D)=(H), is introduced in the present study. Davis et al. [28]
have shown that both the drag coe�cient and Strouhal number increase with the ratio of
(D)=(H). Numerical over-predictions are also reported by other studies [5; 10; 28]. However,
predicted Strouhal numbers using �t=0:04 agree favorably with the experiments as clearly
presented in Figure 28. In Figure 28, the Strouhal number is approximated to a constant value
for Reynolds number raised to a certain range. The present numerical value (0.127) deviates
about 5.8 per cent from the experimental data (0.12) for Re=O(105) [11]. In summary, the
computed Strouhal numbers compare reasonably well with experiments [8]. With the nearly
constant Strouhal number, frequency is proportional to the bulk velocity Ub (or the volume
rate), thus providing the basis of a �ow induced vortex meter [7; 12].

5. CONCLUSION

For the transient �ow simulation, operator splitting can lead to a positive de�nite matrix.
Consequently, the element-by-element conjugated gradient method of acceleration technique
for solving system equations can be implemented into the code and guarantee to obtain the
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converged �ow �eld within certain limited iterations. The BTD gives the e�ect of alleviating
the numerical oscillation and therefore stabilizes the high Reynolds number �ow simulation.
The code successfully implemented on the use of equal order interpolations for velocity and
pressure is veri�ed by the application of a driven cavity �ow and a �ow induced vortex
shedding.
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APPENDIX A: ELEMENT MATRIX

QUADRILATERAL ELEMENT

ITEM (�1; �1)= (−1;−1); (�2; �2)= (1;−1); (�3; �3)= (1; 1); (�4; �4)= (−1; 1)

A�=[A11; A21]; A
�=[A12; A22]; A11 =

1
4
(y3 + y4 − y1 − y2);

A12 =
1
4
(y1 + y4 − y2 − y3)

A21 =
1
4
(x1 + x2 − x3 − x4); A22 = 14 (x2 + x3 − x1 − x4)

〈U〉e= U1 +U2 +U3 +U44
; Se=4(A11A22 − A12A21)

N1
1
4
(1− �)(1− �)

N2
1
4
(1 + �)(1− �)

N3
1
4
(1 + �)(1 + �)

N4
1
4
(1− �)(1 + �)

Me
ab

∫
�e
NaNb d�e ≈ 1

4
Se�ab; �ab=

{
1; a= b
0; a �= b

Dex; ab

∫
�e
Na
@Nb
@x

d�e=
1
4

(
A11

(
1 +

1
3
�a�b

)
�b + A12

(
1 +

1
3
�a�b

)
�b

)

Dey; ab

∫
�e
Na
@Nb
@y

d�e=
1
4

(
A21

(
1 +

1
3
�a�b

)
�b + A22

(
1 +

1
3
�a�b

)
�b

)
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Deab

∫
�e

∇Na ·∇Nb d�e = (A11)
2 + (A21)2

Se
(�a�b)

(
1 +

1
3
�a�b

)

+
(A12)2 + (A22)2

Se
(�a�b)

(
1 +

1
3
�a�b

)

+
A11 A12 + A21A22

Se
(�a�b + �a�b)

Ceab

∫
�e
NaU ·∇Nb d�e = 14 �b

(
1 +

1
3
�a�b

)
(〈U〉e ·A�)

+
1
4
�b

(
1 +

1
3
�a�b

)
(〈U〉e ·A�)

Beab

�t
2

∫
�e
(U ·∇Na)(U ·∇Nb) d�e

=
�t
2Se

((〈U〉e ·A�)(〈U〉e ·A�)(�a�b)
(
1 +

1
3
�a�b

)

+(〈U〉e ·A�)(〈U〉e ·A�)(�a�b)
(
1 +

1
3
�a�b

)

+(〈U〉e ·A�)(〈U〉e ·A�)(�a�b + �a�b))

TRIANGLE ELEMENT

ITEM (�1; �1)= (0; 0); (�2; �2)= (1; 0); (�3; �3)= (0; 1); A11 =y3 − y1; A12 =y1 − y2;

A21 = x1 − x3,

A22 = x2 − x1; 〈U〉e= U1 +U2 +U33
; Se=

1
2
(A11A22 − A12A21); A�=[A11; A21];

A�=[A12; A22]

N1 1− �− �

N2 �

N3 �

Me
ab

∫
�e
NaNb d�e ≈ 1

3
Se�ab; �ab=

{
1; a= b
0; a �= b

Dex; ab

∫
�e
Na
@Nb
@x

d�e=
1
6
(A11�b + A12�b)

Dey; ab

∫
�e
Na
@Nb
@y

d�e=
1
6
(A21�b + A22�b)
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Deab

∫
�e

∇Na ·∇Nb d�e = (A11)
2 + (A21)2

4Se
(�a�b)

+
(A12)2 + (A22)2

4Se
(�a�b)

+
A11A12 + A21A22

4Se
(�a�b + �a�b)

Ceab

∫
�e
NaU ·∇Nb d�e= 16 (〈U〉e ·A�)�b + 16 (〈U〉e ·A�)�b

Beab

�t
2

∫
�e
(U ·∇Na)(U ·∇Nb) d�e

=
�t
8Se

((〈U〉e ·A�)(〈U〉e ·A�)(�a�b)

+ (〈U〉e ·A�)(〈U〉e ·A�)(�a�b)

+ (〈U〉e ·A�)(〈U〉e ·A�)(�a�b + �a�b))

APPENDIX B: NOMENCLATURE

B BTD vector
Beab BTD matrix
CD Drag coe�cient
CL Lift coe�cient
Ceab Convection matrix
D A characteristic diameter
Deab Di�usion matrix
Dex; ab @=@x matrix

Dey; ab @=@y matrix
F Body force vector
F̃D Drag force
F̃L Lift force
F̃S Surface force
f Frequency of the vortex shedding
f adv Convection vector
i Unit base vector in x direction
j Unit base vector in y direction
Me
ab Mass matrix

me Number of elements
Na Shape or trial function of node a
n Outward normal unit vector
ns Unit normal vector (directed into the blu� body)
P Dimensionless pressure
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Re Reynolds number
St Strouhal number
TC Convective time scale
TD Viscous time scale
t Dimensionless time
U Velocity vector
ua Velocity of node a in x-direction
Ub A characteristic velocity
va Velocity of node a in y-direction
x X coordinate
y Y coordinate

Greek letters

� Viscosity
� Density
�e Domain of element
� Boundary
∇ Gradient operator
� Viscous stress tensor

Superscript

k kth time step
e Element

Subscript

a Nodal index
b Nodal index
tr Transpose operator
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